Augentumor: Schlüsselgene identifiziert

Schmerz - pixabay

Einem interdisziplinären Forscherteam der Universität Duisburg-Essen (UDE) ist es kürzlich gelungen, zwei Schlüsselgene zu identifizieren, die für die Entwicklung des häufigsten Augentumors, dem Aderhautmelanom, relevant sind. Ihre Ergebnisse wurden in einer der führenden internationalen Fachzeitschriften veröffentlicht*. Möglich wurde diese Studie dank modernster DNA-Sequenzierungstechnologie und genominformatischer Analysemethoden die seit kurzem am Universitätsklinikum Essen verfügbar sind.

Das Aderhautmelanom tritt vor allem im mittleren bis höheren Lebensalter auf. Knapp die Hälfte der Patienten bekommen Metastasen und sterben meist innerhalb weniger Monate daran, trotz modernster Behandlungsmethoden. Seit Jahrzehnten ist die Augenklinik des Universitätsklinikums Essens ein nationales Zentrum für die Behandlung von Patienten mit Aderhautmelanom. Am Institut für Humangenetik wird erforscht, weshalb dieser Tumor entsteht und metastasiert. Die Essener Forscher konnten bereits vor längerer Zeit nachweisen, dass es zwei Formen des Aderhautmelanoms gibt, die sich genetisch unterscheiden. Ob ein Patient Metastasten ausbildet, ist abhängig davon, welche Form er hat.

Dem Forscherteam um Herrn Dr. Zeschnigk gelang es nun, zwei für die Entwicklung einer der Tumorklassen relevante Schlüsselgene zu identifizieren. Mutationen in diesen Genen, die als EIF1AX bzw. SF3B1 bezeichnet werden, sind auf den Tumor beschränkt und verantwortlich für dessen Entstehung. Es genügt, wenn eines der beiden Gene mutiert ist. Daher vermuten die Forscher, dass beide Gene einen engen Funktionszusammenhang haben.

Michael Zeschnigk: „Wir haben jetzt erstmals zeigen können, dass das Gen EIF1AX ein relevantes Tumorgen ist. Es ist ein wesentlicher Bestandteil in der zellulären Eiweißsynthese. Tumorspezifische Veränderungen des SF3B1-Gens wurden bereits in anderen Tumoren gefunden. Wir entdeckten jedoch eine Besonderheit: metastasierende Aderhautmelanome zeigen andere Mutationen des SF3B1-Gens als diejenigen ohne Metastasierung.“

Die Entdeckung von Mutationen in diesen Schlüsselgenen erlaubt einen besseren Einblick in die Prozesse, die für das unterschiedliche Metastasierungsrisiko verantwortlich sind. Darüber hinaus kann das Wissen helfen, den Krankheitsverlauf bei den Patienten genauer vorherzusagen.

*Martin M, Maßhöfer L, Temming P, Rahmann S, Metz C, Bornfeld N, van de Nes J, Klein-Hitpass L, Hinnebusch AG, Horsthemke B, Lohmann DR, Zeschnigk M: Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nature Genetics, published online 23 June 2013; doi:10.1038/ng.2674

Weitere Informationen:
Dr. Michael Zeschnigk, Michael,
Tel. 02 01 / 723-4558,
michael.zeschnigk@uni-due.de

Pressekontakt am Universitätsklinikum Essen:
Burkhard Büscher,
Tel. 02 01 / 723-2115,
burkhard.buescher@uk-essen.de,
Kristina Gronwald,
Tel. 02 01 / 723-3683,
kristina.gronwald@uk-essen.de

Pressemitteilung Universität Duisburg-Essen, Beate Kostka M.A.

Augentumoren – Heilung aus dem Teilchenbeschleuniger


Krebszeitung

--Download Augentumor: Schlüsselgene identifiziert als PDF-Datei --


  • MRT-Bildgebung des Gehirns (C) Klaus Scheffler / Max-Planck-Institut für biologische Kybernetik, Tübingen
    Hirntumoren

    Stammzellen im Gehirn können entarten und Krebs auslösen. Das junge Gehirn scheinen sie aber vor bestimmten Tumorarten zu bewahren, indem sie die Krebszellen abtöten. Dies könnte therapeutisch genutzt werden – auch bei älteren Patienten. Bei einer durchschnittlichen Überlebenszeit von wenigen Monaten nach der Diagnose ist das Glioblastoma multiforme eine der bösartigsten Krebserkrankungen des Menschen.

    Es ist ein Vertreter von Gehirntumoren,die wohl aus genetisch mutierten Stammzellen des Gehirns hervorgehen – und bislang auch durch eine operative Entfernung, eine Strahlenbehandlung,eine Chemotherapie oder eine Kombination dieser Maßnahmen kaum geheilt werden können.

    […mehr lesen]

  • Aufbau eines Nukleosoms: Die DNA (grau) umschlingt die Histone (lila). Bild: Sponk, Wikimedia Commons
    dkfz

    Aufbau eines Nukleosoms: Die DNA (grau) umschlingt die Histone (lila). Bild: Sponk, Wikimedia CommonsIm Zellkern ist die DNA auf die so genannten Histonproteine aufgewickelt und bildet so in regelmäßigen Abständen kugelige Einheiten, die Nukleosomen. Dadurch sind große Teile des Erbguts unzugänglich, denn Gene in diesen Bereichen können nicht abgelesen werden. Wissenschaftler im Deutschen Krebsforschungszentrum simulierten nun in hoher zeitlicher Auflösung, wie sich kurze DNA-Abschnitte wiederholt spontan aus dem Nukleosom lösen. Die Forscher zeigen erstmals, dass die spulenartigen Histonproteine eine aktive Rolle dabei spielen, den Zugang zur Erbinformation zu ermöglichen.

    Histone sind entwicklungsgeschichtlich gesehen uralte Proteine, die sich bei Mensch, Maus oder Fadenwurm kaum voneinander unterscheiden. Sie dienen im Zellkern als Spulen, auf die der meterlange DNA-Faden gewickelt wird. Bis vor wenigen Jahren hielt man sie für reines Verpackungsmaterial der DNA. Inzwischen ist aber bekannt, dass sie darüber hinaus entscheiden, welche Gene abgelesen werden und welche nicht und damit in die Steuerung vieler Zellfunktionen eingreifen.

    […mehr lesen]

Google News – Gesundheit