Immunzellen gegen Krebs

Immun-Fluoreszenzfärbung, um die Differenzierung einer Stammzelle festzustellen. Fett-Tropfen (rot) sind charakteristisch für Fettzellen, die aus den Stammzellen entstanden sind. Die noch undifferenzierten Zellen sind durch grüne Fluoreszenz in den Zellkernen zu erkennen. Foto: O. Karpiuk
Immun-Fluoreszenzfärbung, um die Differenzierung einer Stammzelle festzustellen. Fett-Tropfen (rot) sind charakteristisch für Fettzellen, die aus den Stammzellen entstanden sind. Die noch undifferenzierten Zellen sind durch grüne Fluoreszenz in den Zellkernen zu erkennen. Foto: O. Karpiuk

Zur Verbesserung der Behandlung von Krebspatienten braucht es verschiedene Ansätze. Einer davon ist die Immuntherapie. Immunzellen (sogenannte T-Zellen) können einen wirksamen Schutz gegen Tumorzellen aufbauen. In Patienten mit fortschreitender bösartiger Erkrankung ist dieser Schutzmechanismus jedoch ungenügend. Unsere Arbeitsgruppe am Ludwig Institute für Krebsforschung und an der Universität Lausanne, Schweiz, untersucht jetzt die Gründe, warum menschliche Immunzellen gegen Krebs weniger stark wirksam sind als gegen Viruskrankheiten, wo das Immunsystem effizient gegen Infektionskrankheiten schützen kann.

Mittels Immuntherapie („Vaccinierung“) kann die Aktivität der T-Zellen gesteigert werden

Viele Viruskrankheiten werden durch das Immunsystem gut in Schach gehalten. Die dafür zuständigen Immun-Zellen und -Moleküle dienen uns als Referenz, denn wir wissen, dass sie an einem wirksamen immunologischen Schutz beteiligt sind. Sowohl bei Virusinfektionen wie auch bei Tumorkrankheiten muss das Immunsystem kranke Körperzellen zerstören, denn virus-infizierte Zellen sind ähnlich gefährlich wie die bösartigen Zellen des Krebses. Bei beiden Krankheitstypen geschieht die Elimination von kranken Körperzellen im Prinzip auf gleiche Art, nur ist dies bei einigen Viruskrankheiten viel effizienter als bei Krebserkrankungen, wo der Immunschutz häufig unzureichend ist. Von den starken Immunreaktionen gegen Viren kann die Forschung also lernen, in dem sie die zuständigen biologischen Weichenstellungen und Mechanismen identifiziert und sie dann in Form von (verbesserter) Immuntherapie nachbildet, d.h. Medikamente und Impfungen entwickelt welche solch potente Immunreaktionen induzieren.

Menschliche Tumorzellen tragen sogenannte Antigene. Es handelt sich um charakteristische Moleküle an der Oberfläche von Tumorzellen, welche auf sehr spezifische Weise durch Immunzellen erkannt werden können.

Diese Antigene erlauben deshalb ein therapeutisches „Targeting“, d.h. eine gezielte und damit schonende Therapie. Bereits im spontanen Ablauf einer Krebserkrankung kann es vorkommen, dass bestimmte Immunzellen (die zytotoxischen T-Zellen) erfolgreich sind im Abtöten von Tumorzellen. Abbildung 1 zeigt wie eine Krebszelle von einer Immunzelle angegriffen und zerstört wird. Dank einem hochspezifischen Erkennungsmechanismus erkennt eine tumor-spezifische T-Zelle (a) eine Tumorzelle (b), was zu einer intensiven Zell-Zell-Interaktion führt (rot umrandeter Bereich). Für kurze Zeit sieht es so aus, wie wenn die zwei Zellen fusionieren würden. Der enge Kontakt hat jedoch einen anderen Zweck. Er ermöglicht der T-Zelle, ihren zerstörerischen Angriff sehr gezielt durchzuführen, womit das umliegend gesunde Gewebe (hier nicht sichtbar) verschont bleibt. Wenige Minuten später löst sich die T-Zelle, und die beschädigte Zellwand der Tumorzelle (mit grossem Loch; c) wird erkennbar, was den Tod der Tumorzelle zur Folge hat.

Mittels Immuntherapie („Vaccinierung“) kann die Aktivität der T-Zellen gesteigert werden. In etwa 5 bis 10% der behandelten Patienten mit bösartigem Melanom (schwarzer Hautkrebs) führt dies zu einer klinischen Verbesserung. Zur Zeit gibt es zahlreiche Bestrebungen, die Erfolgsrate der Immuntherapie zu steigern. Ziel unseres Projektes ist, die genauen molekularen Vorgänge zu identifizieren, welche für eine hohe Effizienz der T-Zell-Aktivität entscheidend sind.

In den vergangenen 5 Jahren konnte unsere Arbeitsgruppe erstmals zeigen, dass die Immunreaktion gegen ein gegebenes Tumor-Antigen dominiert wird durch eine nur kleine Anzahl von ~1-15 Vorläufern von T-Zellen (sogenannte Klonotypen). Diese weisen eine gute Funktionalität und eine überraschende Langlebigkeit auf. Zwar war die Zellalterung („Seneszenz“) gut erkennbar, doch war sie so langsam, dass die T-Zellen viele Jahre überleben konnten. Lange wurde befürchtet, dass Funktionen und Vitalität der T-Zellen bei Krebskranken fundamental beeinträchtigt sind, womit die Immuntherapie grundsätzlich in Frage gestellt wurde. Diese Bedenken sind jetzt aber weitgehend widerlegt; humane T-Zellen sind also genügend „fit“ um einen wirksamen Schutz gegen Krebswachstum aufbauen zu können.

Das jetzt angelaufene Projekt hat nun zum Ziel, die Moleküle genau zu charakterisieren, welche die Erkennung von Tumor-Antigenen und damit das spezifische Abtöten von Krebszellen vermitteln. Es handelt sich um sogenannte T-Zell-Rezeptoren, wovon es viele Millionen verschiedener Versionen gibt. Die enorme Vielfalt erschwert deren Charakterisierung.

Diese technischen Schwierigkeiten müssen Schritt für Schritt gelöst werden. Weltweit gibt es etwa ein Dutzend Forschungsgruppen, welche sich ähnliche Ziele gesetzt haben. Davon werden unsere Arbeiten profitieren können. Die zur Zeit vorhandenen Daten sagen aus, dass wahrscheinlich nur die besten T-Zell-Rezeptoren in der Lage sind, einen wirksamen Immunschutz zu gewährleisten. Viele der in Entwicklung stehenden Impfungen gegen Krebs müssen dahin verbessert werden, dass sie zu einer selektiven Aktivierung der besten T-Zellen führen. An unserem Universitätsspital entwickeln wir neue Immuntherapien, welche bei Melanom-Patienten angewendet werden. Die Analyse der daraus resultierenden T-Zellen und T-Zell-Rezeptoren wird gekoppelt mit einer steten Verbesserung der Immuntherapie, so dass wir die Behandlung kontinuierlich optimieren können.

Bei der Anwendung neuer Tumor-Vaccinen muss also sorgfältig darauf geachtet werden, dass die erwünschten Verbesserungen der Immunaktivitäten auch tatsächlich erreicht werden. Die Grundlagenforschung hat eine große Auswahl von potentiell nützlichen neuen Vaccin-Komponenten identifizert. Welches sind die Besten? Jede Vaccin-Komponente sollte in kleinen medizinischen Studien (mit je 5 bis 10 Patienten) darauf geprüft werden, ob sie menschliche Immunreaktionen induzieren kann. Dafür braucht es die klinische Forschung und eine präzise Labordiagnostik, die es erlaubt, zelluläre Immunreaktionen quantitativ und qualitativ zu charakterisieren. Die so ausgewählten besten Vaccin-Komponenten können anschließend in großen medizinischen Studien (mit jeweils 100 bis 1.000 Patienten) auf klinischen Nutzen geprüft werden. Diese Schritte entsprechen den heute allgemein- gültigen Prinzipien für die Entwicklung neuer Arzneien. Die dafür notwendige enge Zusammenarbeit von verschiedenen Spezialisten der klinischen und der medizinisch-biologischen Forschung hat zum Ziel, die Therapie – Erfolgsraten weiter zu steigern, damit die anstehenden medizinischen Probleme besser bewältigt werden können.

Kontakt: Prof. Dr. Daniel Speiser,
Ludwig Institute for Cancer Research Division d’Onco-Immunologie Clinique,
CHUV Hopital Orthopédique Université de Lausanne.
Telefon: +41 21 314 01 82
E-Mail: daniel.speiser@hospvd.ch

 Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 200.000 €.Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Weitere Informationen: www.wilhelm-sander-stiftung.de

Pressemitteilung Wilhelm Sander-Stiftung, Bernhard Knappe


Krebszeitung

--Download Immunzellen gegen Krebs als PDF-Datei --


  • Histologischer Schnitt durch eine Prostata mit normaler Drüsenstruktur (links) und Tumorzellherden (rechts). Farblich unterscheidbar sind Zellkerne (braun), Bindegewebe (blau) und Drüsenlumen (weiße Bereiche). Maßstab/ Vergrößerung: 200-fach Quelle: NGFN
    Prostatakrebs

    Forscher der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und des Deutschen Cochrane Zentrums (DCZ) haben nachgewiesen, dass der Arzneistoff Tamoxifen – bekannt aus der Brustkrebstherapie – auch männlichen Patienten zugutekommen könnte: Er mildert die Nebenwirkungen einer hormonellen Prostatakrebs-Therapie wie etwa die Entwicklung einer Vergrößerung der Brustdrüse beim Mann (Gynäkomastie). Dieser Effekt könnte die Zahl der Therapie-Abbrüche deutlich reduzieren. Die jüngsten Forschungsergebnisse werden jetzt im Fachmagazin „BMC Medicine“ veröffentlicht.

    Prostatakrebs ist eine der häufigsten Krebserkrankungen bei Männern und grundsätzlich gut behandelbar: Mit einer frühen Therapie zur Unterdrückung männlicher Sexualhormone (Androgene) lässt sich die Entwicklung fortgeschrittener Erkrankungen erfolgreich verlangsamen. Allerdings machen die Nebenwirkungen dieser Therapie Patienten häufig psychisch zu schaffen: Die Antiandrogen-Behandlung kann beispielsweise für eine zum Teil schmerzhafte Vergrößerung der Brustdrüse verantwortlich sein – einer der Gründe, warum viele Männer die Therapie frühzeitig abbrechen und damit deren Erfolg gefährden.

    […mehr lesen]

  • Immun-Fluoreszenzfärbung, um die Differenzierung einer Stammzelle festzustellen. Fett-Tropfen (rot) sind charakteristisch für Fettzellen, die aus den Stammzellen entstanden sind. Die noch undifferenzierten Zellen sind durch grüne Fluoreszenz in den Zellkernen zu erkennen. Foto: O. Karpiuk
    Forschung

    Die Arbeitsgruppe von Dr. Andreas Beilhack an der Universität Würzburg entwickelt in einem von der Wilhelm Sander-Stiftung geförderten Projekt einen Bluttest zur Vorhersage einer bedrohlichen Abstoßungsreaktion nach Stammzelltransplantation. Die Stammzelltransplantation kann bei Leukämie- und Lymphompatienten eine ersehnte Heilung von Krebs bringen.

    […mehr lesen]

Google News – Gesundheit